Emotion Recognition of EEG Signals Based on the Ensemble Learning Method: AdaBoost
نویسندگان
چکیده
In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially, electroencephalogram (EEG) has become a popular research topic attracted wide attention. However, how to extract effective features from EEG signals accurately recognize them by classifiers have also an increasingly important task. Therefore, in this paper, we propose method ensemble learning method, AdaBoost. First, consider time domain, time-frequency nonlinear related emotion, preprocessed fuse into eigenvector matrix. Then, linear discriminant analysis feature selection is used reduce dimensionality features. Next, use optimized sets train classifier AdaBoost, for binary classification. Finally, proposed been tested DEAP data set four emotional dimensions: valence, arousal, dominance, liking. The proved be recognition, best average accuracy rate can reach up 88.70% dominance dimension. Compared other existing methods, performance significantly improved.
منابع مشابه
Emotion recognition method using entropy analysis of EEG signals
This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the...
متن کاملthe effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students
هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...
15 صفحه اولA Novel Emotion Recognition Method Based on Ensemble Learning and Rough Set Theory
Emotion recognition is a very hot topic, which is related with computer science, psychology, artificial intelligence, etc. It is always performed on facial or audio information with classical method such as ANN, fuzzy set, SVM, HMM, etc. Ensemble learning theory is a novelty in machine learning and ensemble method is proved an effective pattern recognition method. In this paper, a novel ensembl...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملEEG-based Emotion Recognition pdfsubject
In the area of human-computer interaction information about the emotional state of a user becomes more and more important. For instance, this information could be used to make communication with computers more human-like or to make computer learning environments more effective. This thesis proposes an emotion recognition system from electroencephalographic (EEG) signals. Emotional states were i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2021/8896062